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Novel application of In Vivo Micro-
Optical Coherence Tomography to 
assess Cornea scarring in an Animal 
Model
Marcus Ang1,2,3,4, Kavya Devarajan2, Suchandrima Das2, Gary H. F. Yam2, Hla Mynt Htoon2, 
Si Chen5, Xinyu Liu5, Linbo Liu5, Michael Girard2,6 & Jodhbir S. Mehta1,2,3

This pilot study uses a micro-optical coherence tomography (micro-OCT) system with ~1 μm axial 
resolution specifically to image the cornea and corneal scars in vivo. We used an established murine 
corneal scar model by irregular phototherapeutic keratectomy in ten C57BL/6 mice, with serial imaging 
using the micro-OCT and compared to anterior segment (AS-OCT) (RTvue, Optovue, Fremont, CA) 
before and after scar induction. Main outcome was agreement between the AS-OCT and micro-OCT 
using Bland-Altman plots (95% limits of agreement, LoA).We analysed 10 control eyes and 10 eyes with 
corneal scars and found that there was good agreement between AS-OCT and micro-OCT (P > 0.05) 
LOA: lower limit −14 µm (95% CI: −19 to −8.8 µm) upper limit 23 µm (95% CI: 18 to 28.5 µm) in terms 
of central corneal thickness. There was also good agreement between AS-OCT and micro-OCT in terms 
of corneal scar measurements (P > 0.5; correlation coefficient >0.99) LOA lower limit −2.1 µm (95% CI: 
−2.8 to −1.5 µm); upper limit 1.8 µm (95% CI: 1.1 to 2.4 µm). Our pilot study suggests that this novel in 
vivo micro-OCT imaging technique was able to measure central corneal thickness and scar thickness in 
agreement with current AS-OCT techniques.

Optical coherence tomography (OCT) uses low-coherence interferometry to enable non-contact, in vivo 
high-resolution imaging of the cornea1. However, most commercial anterior segment OCT (AS-OCT) systems 
are only able to achieve up to 5 μm axial resolution2 and thus, not able to differentiate layers within the cornea3. 
We have previously described a micro-OCT that uses broadband light to produce images of the cornea with up 
to 1–2 μm spatial resolution4–6. The micro-OCT was able to image corneal endothelial cells4,5 with a much higher 
resolution compared to a spectral domain OCT7.

Corneal scarring secondary to various insults may cause permanent visual impairment, where corneal trans-
plantation may be the only way to restore vision8. As most corneal lesions or scars do not exist throughout the 
cornea, lamellar replacement of the diseased corneal layers9, may provide better tectonic outcomes10, or faster 
visual rehabilitation11–13. Thus, delineation of the cornea is important to allow for targeted treatment – while 
real-time AS-OCT guidance has now become possible in our surgical practice14. However, current AS-OCT sys-
tems have limited resolution, which are only able to detect gross changes to the cornea without detailed imaging 
of corneal layers, especially in the presence of corneal scars or intrastromal lesions.

Therefore, we performed a pilot study using a superluminescent diode array based micro-OCT system with 
~1 μm axial resolution to detect diseased corneal layers, i.e. even in the presence of corneal scarring. Here, we 
compared this in vivo micro-OCT to a commercially available AS-OCT system in an established animal model to 
assess normal and scarred corneas.
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Results
The analysis was done across all corneal samples (10 control and 10 injured). First, we compared normal corneal 
thickness measurements between established AS-OCT and micro-OCT to validate that the novel micro-OCT was 
comparable – Fig. 1. We found that the overall mean at baseline central corneal thickness (CCT) was 94.8 ± 4.0 µm 
using the AS-OCT and 91.4 ± 6.0 µm using the micro-OCT. There were no significant differences in mean CCT 
measured under AS-OCT and micro-OCT (Table 1). There was a good agreement between these two imaging 
techniques (P > 0.05) as the LOA were ranged from a lower limit of −14 µm (95% CI: −19 to −8.8 µm) to upper 
limit of 23 µm (95% CI: 18 to 28.5 µm) – Fig. 2.

Next, we compared the ability of the micro-OCT to measure the corneal scar thickness as compared to the 
AS-OCT. The mean scar thickness was 6.9 ± 3.3 µm measured by AS-OCT and 6.9 ± 3.0 µm by micro-OCT 
wherein no significant difference was observed between both the imaging modalities (Table 2). The central scar 
was developed to the greatest thickness at week 2 and subsequently reduced by week 4. There was a good agree-
ment between these two imaging techniques (P > 0.5; correlation coefficient >0.99) with the LOA ranged from a 
lower limit of −2.1 µm (95% CI: −2.8 to −1.5 µm) to upper limit of 1.8 µm (95% CI: 1.1 to 2.4 µm) – Fig. 3.

The micro-OCT successfully identified the area of corneal scarring as confirmed by corresponding in vivo 
confocal microscopy imaging (Fig. 4) and histology (Fig. 5). Hematoxylin and eosin histochemistry in scarred 
corneas at three weeks confirmed corresponding scarring with increased inflammatory cell infiltration in the 
corneal stroma, and distinct epithelial disorganization. We also used the micro-OCT to identify the areas of active 
scarring, confirmed by the presence of myofibroblasts and fibroblasts using immunostaining for alpha smooth 

Figure 1. Example of micro-OCT Imaging of corneal scar with image processing for micro-OCT image 
enhancement. (A) Raw OCT image with noise and distortion. (B) Background noise and edge distortions 
removed using filters. (C) Image compensated for light attenuation and contrast enhancement. (D) Post-
processing for improved visibility of tissue layers.

Phase – Corneal 
thickness

Micro-OCT
Mean Thickness

AS-OCT
Mean Thickness

Mean Difference 
(Bias)

P-value*
95% Confidence 
Interval - Bias

95% CI of LOA

Mean
(N = 10) S.D

Mean
(N = 10) S.D

Mean
(N = 10) S.D Lower LOA Upper LOA

Baseline 0.0914 0.006 0.0948 0.004 0.003 0.006 0.1456 (>0.05) (−0.0014, 0.008) (−0.01865, −0.0013)
µ = −0.009

(0.008, 0.025)
µ = −0.016

Week 1 0.0802 0.0072 0.0854 0.0051 0.005 0.011 0.1738 (>0.05) (−0.0028, 0.0133) (−0.0311, −0.00255)
µ = −0.016

(0.0131, 0.041)
µ = −0.027

Week 2 0.0731 0.004 0.0833 0.0037 0.010 0.006 0.0012 (<0.05) (0.005, 0.0151) (−0.0121, 0.00541)
µ = −0.003

(0.0150, 0.032)
µ = −0.023

Week 4 0.1009 0.006 0.1003 0.004 0.0006 0.0103 0.8564 (>0.05) (−0.007, 0.006) (−0.0338, −0.00775)
µ = −0.0208

(0.006, 0.032)
µ = −0.019

Table 1. Comparison of in vivo central corneal thickness measurements (milimeters) between anterior segment 
optical coherence tomography and micro-optical coherence tomography.
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muscle actin (α-SMA) and fibronectin – Fig. 5. The scar detected by the micro-OCT corresponded to the areas of 
α-SMA staining and strong fibronectin expression compared to the control, normal corneas.

Discussion
Our study using a novel in vivo micro-OCT imaging technique suggested that the measurement of central cor-
neal thickness and scar thickness were generally of good agreement with AS-OCT images, with at least 95% of 
measurements and differences within the 95% prediction intervals and 95% LOA, respectively. We found that 
the images acquired were able to discern the five basic corneal layers. When imaging the irr-PTK injured eyes, 

Figure 2. Bland-Altman plot comparing corneal thickness measurements between AS-OCT and Micro-
OCT. Each marker represents one mouse cornea of which the central corneal thickness was measured during 
the follow-up imaging. Solid line = mean of the difference. Short dashed line = reference zero. Long dashed 
line = upper and lower 95% limits of agreement (mean +1.96 SD, mean −1.96 SD). SD = standard deviation of 
the mean difference.

Phase- Scar 
thickness

Micro-OCT
Mean Thickness

AS-OCT
Mean Thickness

Mean Difference 
(Bias)

P-value*
95% Confidence 
Interval - Bias

95% CI of LOA

Mean
(N = 10) S.D

Mean
(N = 10) S.D

Mean
(N = 10) S.D Lower LOA Upper LOA

Week 2 0.0132 0.003 0.0129 0.0029 0.0002 0.001 0.5108 (>0.05) (−0.001, 0.0005) (−0.0039, −0.001)
µ = −0.0024

(0.0005, 0.003)
µ = 0.0019

Week 3 0.0099 0.0024 0.0098 0.003 0.0001 0.0008 0.6956 (>0.05) (−0.0007, 0.0005) (−0.0029, −0.0007)
µ = −0.0018

(0.0004, 0.0026)
µ = 0.0015

Week 4 0.0069 0.003 0.0067 0.0033 0.0002 0.001 0.56 (>0.05) (−0.001, 0.0005) (−0.0038, 0.0009)
µ = −0.0024

(0.0005, 0.0033)
µ = 0.0019

Table 2. Comparison of in vivo central corneal scar thickness measurements (milimeters) between anterior 
segment optical coherence tomography and micro-optical coherence tomography.

Figure 3. Bland-Altman plot comparing scar thickness measurements between AS-OCT and micro-OCT. Each 
label represents one mouse cornea of which the scar thickness was measured during the follow-up imaging. 
Solid line = mean of the difference. Short dashed line = reference zero. Long dashed line = upper and lower 95% 
limits of agreement (mean +1.96 SD, mean −1.96 SD). SD = standard deviation of the mean difference.
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the scar tissue was also detected prominently. For example, the mean central corneal (80.2 ± 11.28 μm) and scar 
thickness (9.9 ± 2.28 μm) in mice cornea determined by the micro-OCT showed good agreement with immuno-
fluorescent histology measurements of (82 ± 5.5 μm) CCT and (9.2 ± 3.5 μm) scar obtained at Week 2 follow-up. 
The resolution of distinction of the corneal layers in the processed micro-OCT acquired images, are comparable 
to the histology results, suggesting the potential for OCT to produce high resolution images of specific corneal 
layers non-invasively. When comparing the micro-OCT images with the AS-OCT imaging modality, the former 
performs better than AS-OCT in prominently displaying the scar distribution and intensity.

However, it is important to note the limitations of the in vivo micro-OCT used in this pilot study. One of the 
main problems encountered was the widespread presence of motion artefacts. The reason behind this could be 
attributed to the heart beat rate (310–840 beats per minute) of the mice used herein, which was much higher than 
the image acquisition speed of 60 frames per second. In view of this, future outlook for this area of study may 
involve improving the image acquisition speed. Moreover, the image acquisition for the micro-OCT is longer 
(estimated 1–2 minutes per image) compared to IVCM (15–30 seconds) and AS-OCT (5 seconds). Nonetheless, 
we obtained promising results, where this non-invasive imaging technique could produce images with qual-
ity comparable to that of ex vivo histology, and with more detail as compared to the current AS-OCT. Further 
improvements in the image processing technique and image acquisition speed, may allow better results for 
human eyes15,16.

The recent advances in OCT technology now allows, not only higher resolution imaging of the cornea17, but 
also additional information such as en face reconstruction for the cornea and ocular surface18, or even delineating 
vascular flow within the cornea19–21. High-resolution OCT is currently able to image corneal layers i.e. epithelium, 
Bowman’s layer, stroma, Descemet membrane, endothelium - and even the ocular surface tear film22. However, 
we have described a micro-OCT system that is able to provide more details similar to in vivo microscopy imaging, 
which may have a potential role in corneal pathologies that specifically require more information such as surgical 
planning in corneal dystrophies23, atypical corneal infections requiring microscopic detail of the pathogen24, or 
assessing the cornea after refractive surgery where high definition stromal layer assessment is required25,26.

In summary, despite the recognized limitations of this in vivo micro-OCT system, we provide promising early 
results from an animal study that suggests high resolution images with histology like detail are obtained in both 
normal and scarred corneas. Technical improvements such as developing a swept source micro-OCT system with 
higher A-line speed (up to 4 MHz)27, or introduction of a line scan camera with full-range OCT imaging28, may 
improve the image quality even further. If successful, the increased amount of detail in corneal structure anal-
ysis could have clinical applications in assessing disease within corneal layers or planning for selective corneal 
replacement. Further studies for human corneal imaging use in vivo would be required to establish this promising 
micro-OCT system in the future.

Methods
This study was approved by the Institutional Animal Care and Use Committee of Singapore Health Services 
and followed the guidelines in the use of Animals in Ophthalmic and Vision Research. We used a murine cor-
neal scar model by irregular phototherapeutic keratectomy as previously described13. Ten C57BL/6 mice were 
anaesthetized by an intraperitoneal injection of ketamine hydrochloride (20 mg/kg body weight) and xylazine 
hydrochloride (2 mg/kg body weight), with only one eye treated under topical anesthesia (topical 1% lignocaine 

Figure 4. Examples of in vivo confocal microscopy images in (A) area of normal cornea in the control eyes 
showing normal stromal cells with dark background; (B) area of corneal scarring exhibiting strong stromal 
reaction due to the presence of active stromal fibroblasts depicted by the hyper-reflective region. Scale bar is 
50 µm.
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Figure 5. Representative micro-OCT of control and stromal scarred cornea comparing AS-OCT, histology 
and slit lamp photography. (A–D) Example images from micro-OCT (A,B) and conventional AS-OCT imaging 
(C,D); Figures A and C represent the control cornea; whereas B and D represent the scarred cornea where the 
yellow asterisk is marked to identify the wound. The micro-OCT is able to show the corneal scar with much 
higher definition depicting changes to lamellar layers i.e. the anterior stroma and epithelium (A,B). (E–H) 
Immunohistochemical staining for alpha smooth muscle actin (α-SMA) and for fibronectin (FN) and in 
mice corneas at three weeks after injury. (E) Example of a normal control cornea showing absence of α-SMA. 
(F) Example of scarred cornea showed intense α-SMA staining in the sub-epithelial stroma, indicating haze 
development corresponding to the scar seen in the micro-OCT images. (G) Example of a normal control cornea 
without scarring showing the absence of FN staining. (H) Example of a scarred cornea with distinct FN signal 
in the central stromal region Cell nuclei were stained with FN, α-SMA signals were in green fluorescence. (I,J) 
Hemotoxylin and Eosin (H&E) staining of (I) Control cornea showing no evidence of scarring or inflammation. 
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hydrochloride). Briefly, a standard 2 mm diameter central corneal wound was made using #64 Beaver blade and 
denuded of epithelium. Irregular PTK (irrPTK) was then performed to the ablation zone by firing 105 laser pulses 
(ablation depth ~10 μm) with an excimer laser. A fine mesh screen was positioned in the path of laser after firing 
50% of the pulses performed with PTK. Discomfort was relieved by subcutaneous injection of Buprenorphine, 
0.05 mg/kg body weight, twice daily for 1 day. Tobramycin ointment was applied twice daily for 2 days to prevent 
infection. Both injured and fellow control eyes were imaged under micro-OCT, slit lamp biomicroscopy, in vivo 
confocal microscopy and standard OCT (described in detail below) at day 3 before and 7, 14, 21, 28 days after scar 
induction. The mice were sacrificed at the 5th week.

Micro-Optical Coherence Tomography Imaging. The micro-OCT essentially uses light scattered elasti-
cally from within tissue in three dimensions and uses the electric field amplitude and the optical delay of light 
returned from the sample to measure the depth of the tissue. In this study, the micro-OCT system was modified 
from that described previously29, with significant improvements to axial and lateral resolution. The high-bandwidth 
(~165 nm centered at 830) and short coherence length light, is obtained by use of a superluminescent diode source 
(T-850, Superlum, Ireland), allowing axial resolution of 2.5 μm in air. The system includes an interferometer while 
the reference and sample arms intersect at the beam-splitter. A lateral resolution of 2.5 μm (10X objective lens) and 
1.3 μm (20X objective lens) is achieved. Effective power incident on sample was kept less than 2 mW. The galvanom-
eter scanning motors were controlled using customizable software, in correspondence with the spectral-data from a 
scan camera (E2V, AViiVA EM4). The line rate (1024 per frame), frame rate (60 per second) and the scan geometry 
(3.5 mm × 3.5 mm) were used. Three dimensional images (3.5 mm × 3.5 mm × 1 mm, W × H × D) were obtained 
with an acquisition time of less than 3 minutes per 3D image.

Optical Coherence Tomography Image Enhancement and Data collection. Current image qual-
ity from standard OCT is greatly hampered by the presence of shadow artifacts and poor tissue visibility in 
the deeper layers - due to signal attenuation, whereby signal strength diminishes as a function of tissue depth. 
Moreover, the animal model for this experiment, mice, have a very high heart rate of 310–840 beats per min-
ute, which being much higher than the frame rate results in noise and distortion in the captured image. Filters 
were applied to remove the background noise and edge distortions from the images using MATLAB R2017a 
(The MathWorks, Inc., Natick, Massachusetts, United States). Further, the captured micro-OCT images were 
improved using compensation algorithms to compensate for light attenuation and contrast enhancement with 
post-processing software15, used to remove the shadow artefacts from dense structures and improve the visibility 
of the deep tissue layers, as previously described – Fig. 116. The post-processed images were then used to obtain 
information on the corneal, epithelial and the scar thickness (in case of the injured samples). All measurements 
were done using ImageJ and each measurement was computed as the average of 10 measurements taken across 
the sample.

Anterior segment evaluation and histology. We performed serial slit-lamp microscopy (FS-3V Zoom 
Photo Slit Lamp, Nikon, Tokyo, Japan) and AS-OCT (RTvue, Optovue, Fremont, CA) to compare corneal meas-
urements between the micro-OCT and AS-OCT. In vivo confocal microscopy (Heidelberg Engineering GmbH, 
Heidelberg, Germany) was also performed for corneal scars in vivo. After sacrifice, the murine corneas were 
extracted and fixed in 10% formaldehyde (Sigma Aldrich, St. Louis, MO, USA) for 60 min and PBS washes. They 
were dehydrated and processed for paraffin embedding, with sections (5 μm thick), haematoxylin and eosin 
(H&E) staining - using Mayer’s hematoxylin (Sigma Aldrich, USA), then differentiated with acid alcohol, exten-
sively washed before stain with Eosin solution (Sigma Aldrich, USA) for another 2 minutes, washed, and dehy-
drated. The section was mounted with Permount reagent (Fisher) and viewed under light microscopy (Nikon 
C2 confocal microscope). Immunofluorescence staining for scar tissue markers was performed using Mouse On 
Mouse (MOM) Immunodetection kit (Vector Laboratories Inc., Burlingame, CA, US) with mouse monoclonal 
antibody against alpha smooth muscle actin (α-SMA) (DAKO M0851; 1:200 dilution) and mouse monoclonal 
antibody against fibronectin (FN) (Millipore MAB1940; 1:200 dilution; Temecula CA, US). After staining, the 
samples were mounted with Vectashield containing DAPI (Vector Laboratories) and viewed under fluorescence 
microscopy (ZEISS Axio Observer.Z1, Oberkochen, Germany).

Statistical analysis. Mean differences in corneal and scar measurements (mean ± standard deviation, SD) 
between the two machines were assessed using a paired t-test, after tests for normality. Agreements between 
the AS-OCT and µ-OCT machines were also described using the Bland-Altman, with 95% limits of agreement 
(LoA). Bland Altman analysis was performed with MedCalc Version 17.1. Intra-Class Correlation Coefficients 
were computed for inter-machine reliability of data. All other statistical tests were performed with IBM Corp. 
Released 2011 IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.; Statistical significance 
was considered p < 0.05.

Data availability. The data that support the findings of this study are available from the corresponding 
author.

(J) Injured cornea showing the area of scar with increased inflammatory cell infiltration and epithelial 
disorganization which corresponded to the area of scar detected by the micro-OCT. (K,L) Examples of slit-lamp 
photographs showing normal (K) and scarred (L) corneal, slit-beam to demonstrate the scars are mainly in the 
anterior stromal aspects.
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